Estimation of High Conditional Quantiles for Heavy- Tailed Distributions
نویسندگان
چکیده
Estimation of High Conditional Quantiles for HeavyTailed Distributions Huixia Judy Wang a , Deyuan Li b & Xuming He c a Department of Statistics , North Carolina State University , Raleigh , NC , 27695 b Department of Statistics , Fudan University , Shanghai , 200433 , China c Department of Statistics , University of Michigan Accepted author version posted online: 12 Sep 2012.Published online: 21 Dec 2012.
منابع مشابه
Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels
− This paper is dedicated to the estimation of extreme quantiles and the tail index from heavy-tailed distributions when a covariate is recorded simultaneously with the quantity of interest. A nearest neighbor approach is used to construct our estimators. Their asymptotic normality is established under mild regularity conditions and their finite sample properties are illustrated on a simulation...
متن کاملNonparametric Estimation of Extreme Conditional Quantiles
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on i.i.d. samples. On the other hand, quantile regression based procedures work well for estimation within the data range i.e. the estimation of nonextreme quantiles but break down when main interest is i...
متن کاملAn Integrated Functional Weissman Es- Timator for Conditional Extreme Quan- Tiles
• It is well-known that estimating extreme quantiles, namely, quantiles lying beyond the range of the available data, is a nontrivial problem that involves the analysis of tail behavior through the estimation of the extreme-value index. For heavy-tailed distributions, on which this paper focuses, the extreme-value index is often called the tail index and extreme quantile estimation typically in...
متن کاملFunctional nonparametric estimation of conditional extreme quantiles
− We address the estimation of quantiles from heavy-tailed distributions when functional covariate information is available and in the case where the order of the quantile converges to one as the sample size increases. Such ”extreme” quantiles can be located in the range of the data or near and even beyond the boundary of the sample, depending on the convergence rate of their order to one. Nonp...
متن کاملHigh quantile regression for extreme events
For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...
متن کامل